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Abstract

Topology’s objective is to understand and formalize shape, whatever that may be. Despite its
initial, seemingly miraculous departure from geometry—replacing distance metrics with open and
closed sets—topology maintains a profound connection to it. Through a series of morphisms, a
topology on a set can be transformed into simplicial sets, then into a chain of connected abelian
groups. These groups reveal invariant characteristics of the topology, known as Betti numbers,
which are crucial in comprehending the shape of mathematical objects. These algebraic manipula-
tions allow for the mathematical objects to retain structure throughout the process. The paper’s
objective is to elucidate the computation of homology from various perspectives, demonstrating its
application in both traditional topological settings and extended data structures. This exploration
underlines both the elegance embedded within the abstract nature of homology in addition to the
significance of topological methods in comprehending complex shapes.
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Introduction

To understand homology, the notion of topology must be extended into combinatorial structures

known as simplicial complexes. This allows for a continuous abstract representation of a space to

be represented in discrete structures with concrete points and connections. It turns out there are

different grains of abstraction from which this process can be understood from, each offering its

unique insights and challenges.

The study of Homology allows for further identification of topological objects, uncovering the

underlying shape and essence of spaces that might otherwise elude understanding. The process

delineates the shape of the space with certain invariant characteristics.

We will begin with preliminary knowledge in 2.1.2 and then move towards constructs that allow

for ease of computation in 2.1.2. After words, we will dive into constructs that allow for ease of

theoretical expressibility in 3.1, and then finally exemplify homology’s utility in 4.2.
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Preliminary

2.1 From Point-Set to Combinatorial Topology

The conceptual viewpoint of point-set topology allows for a forumulaic continuous nature. The

notions are abstracted from the concepts of open and closed sets which holster definitions that

cater towards analytical perspectives.

2.1.1 Topological Spaces

To begin, we assume conceptual understanding of logic and set theory. Topology is founded on the

ideas of inclusion and exclusion; this can be illustrated by means of set theory or geometry.

Definition 1. Topology A topology on a set X is a collection T of subsets of X having the

following properties:

1. ∅ and X are in T .

2. The union of the elements of any subcollection of T is in T .

3. The intersection of the elements of any finite subcollection of T is in T .

Figure 2.1: X = {A,B,C}, T = {{A,B,C}, {A,B}, {A}, {B}}.
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Following very cleanly from this are the ideas of openness and closedness.

Definition 2. (Open-set) Let X be a set equipped with a topology T , then S ∈ T means that

S is open. The complement of an open set is a closed set.

The example in Figure 2.1, illustrates an instance whereby the set-theoretic axioms of a topology

hold. Of great importance in topology is the concept of continuous functions. Burgeoning from

the analytical study of R, an analytical perspective of ϵ, δ is met with mathematically equivalent

representations using open/closed sets.

Definition 3. (Continuity) A function f : X → Y is continuous if for every open set A in Y ,

the pre-image f−1(A) is open in X.

The fundamental comparison between topological spaces X and Y is,

Definition 4. (Homeomorphism) A homeomorphism f : X → Y is a 1-1 onto function, such

that both f and f−1 are continuous. We say that X is homeomorphic to Y , denoted X ≈ Y , and

that X and Y have the same topological type.

To facilitate understanding of homology, it would help to have examples illustrated from the

perspective of 3-dimensional surfaces or 2-manifolds. Homeomorphisms between topological spaces

allow for the morphing of one space into another. This can enable topological spaces to be studied

from the lens of category theory; having objects and morphisms between objects. It turns out these

point-set representations can be shown to have equivalence to a more combinatorial representation.

2.1.2 Simplicial Complexes

Different objectives require differing frameworks or viewpoints on the same problem. Point-set

topology enables the concepts of infinite sets to be well understood. To reach a more computational

methodology there must be geometric definitions that allow us to talk about combinations and there

must be objects we want to combine. Said objects of interest are simplices, these manifestations

when combined can be equivalent to an underlying space and allow for the ease of computation.

An interesting analog here is how the motivation of point-set topology expressed in the form of

metric spaces and epsilon balls is ditched for higher abstraction. We will begin with the geometric

intuitions and then abstract away.

The constituent part of a simplicial complex is a k-dimensional simplex:

Definition 5. (k-simplex) A k-simplex is the convex hull of k + 1 affinely independent points

S = {v0, v1, . . . , vk}. The points in S are the vertices of the simplex.
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Integral to the notion of simplex is that of a face, much like a triangle is composed of 3 edges,

and each edge is composed of two vertices.

Definition 6. (face) Let σ be a k-simplex defined by S = {v0, v1, . . . , vk}. A simplex τ defined

by T ⊆ S is a face of σ.

These ideas motivate the larger structure that is a collection of such simplices:

Definition 7. (geometric simplicial complex) A simplicial complex K is a finite set of sim-

plices such that:

1. Every face of a simplex in K is in K, and

2. The non-empty intersection of any two simplices of K is a face of each of them.

As mentioned at the start of the section, we are merely interested in the elements and their

subset inclusion to exclusion. Therefore as a means of raising abstraction, we will define the abstract

version of the aforementioned definition. Given a geometric simplicial complex, the vertices and

faces give rise to an abstract simplicial complex.

Definition 8. (Abstract simplicial complex) An abstract simplicial complex K consists of a

set S of finite sets such that if A ∈ S, so is every subset of A. We say A ∈ S is an (abstract)

k-simplex of dimension k if |A| = k + 1.

To illustrate the connections to point-set topology consider the simplicial complex:

K = {{a}, {b}, {c}, {d}, {a, b}, {b, c}, {a, c}, {c, d}, {b, d}, {a, b, c}}.

This definition shows that the inclusion and exclusion of separate entities within the complex

are fundamental. Allowing the capacity to understand the relation to a point set topology or the in-

tersection and union of subsets. Imparting the geometric notion into the above definition we attain,

Definition 9. (Vertex scheme) Let K be a simplicial complex with vertices V and let S be the

collection of all subsets {v0, v1, . . . , vk} of V such that the vertices v0, v1, . . . , vk span a simplex of

K. The collection S is called the vertex scheme of K.

Previously simplicial complex K was defined solely in terms of subsets of K. Defining the

vertex set V, V (K) = {a, b, c, d}. With this labelling along with the definition of a vertex scheme,

the geometric understanding of d-dimensional simplices becomes understandable. Every abstract
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simplicial complex is the vertex scheme of infinitely many geometric simplicial complexes; two

sample geometric realizations in Figure 2.4 are each valid for the abstract simplicial complex K.

Figure 2.2 shows the geometric interpretation of the simplicial complex K with labels. Fig-

ure 2.3 is provided to bridge the relationship between point-set topology and simplicial complexes.

The linkages between layers allow for an understanding of face and corresponding higher simplex.

Figure 2.2: Geometric interpretation of K
Figure 2.3: View of K through poset visual-
ization.

Vertex schemes allow the specifics of spanning sets, combinations, and geometric realizations.

Within the jump from abstract simplicial complex to vertex scheme, the concept of combination

has varying properties of choice that construct wholy different spaces.

Definition 10. (Combination) Let S = {p0, p1, . . . , pk} ⊆ Vd. A linear combination is x =∑k
i=0 λipi, for some λi ∈ F. An affine combination is a linear combination with

∑k
i=0 λi = 1 with

λi ∈ R. A convex combination is an affine combination with λi ≥ 0, for all i. The set of all convex

combinations is the convex hull.

To connect each of the concepts defined above is a notion of equivalence or isomorphism; a full

relationship exists between the abstract simplicial complex and the vertex schemes.

Definition 11. (Isomorphism) Let K1,K2 be abstract simplicial complexes with vertices V1, V2

and subset collections S1, S2, respectively. An isomorphism between K1,K2 is a bijection ϕ : V1 →

V2, such that the sets in S1 and S2 are the same under the renaming of the vertices by ϕ and its

inverse.

Theorem 3.2 Every abstract complex S is isomorphic to the vertex scheme of some simplicial

complex K. Two simplicial complexes are isomorphic iff their vertex schemes are isomorphic as

abstract simplicial complexes.

In Figure 2.4, the abstract simplicial complexes K1 and K2 have respective vertex schemes.

Given there exists a bijection that maintains the set denominations between the abstract simpli-
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(a) |K1| (b) |K2|

Figure 2.4: Geometric realizations

cial complexes, they are isomorphic. The connection between topological spaces and simplicial

complexes resides in the notion of triangulation. A way of carving up the soft and squishy surfaces

into a vertex scheme that maintains the original topological nature.

Definition 12. (Triangulation) A triangulation of a topological space X is a homeomorphism

h : |K| → X, where K is a simplicial complex.

Here |K| represents the geometric realization of abstract simplicial complex K. Triangulation

connects back to the point-set notions of manifolds and surfaces and presents equivalence towards

the combinatorial representations.
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Categorical Perspective

3.1 Simplical Homology to Singular Homology

Homology was originally presented from the standpoint of simplicial homology using the lens of

simplicial complexes. This standpoint was initially fruitful, however through time, flaws in its

expressability led to unintelligible complications. The non-finite but countable framing on the

problem through simplicial sets allowed for a machinery of connectivity that wasn’t present in the

simplicial complexes.

Building off the concept of simplicial complex, to understand homology and how it is achieved

it very much helps to extend this idea to a different framing known as simplicial sets. This allows

for a way to think about simplicial complex K as a sequence of sets X0, X1, X2, . . . , Xn, where K

= X0 ∪X1 ∪X2 ∪ ... ∪Xn. The index of each sequenced set denotes the degree of simplices, thus

X0 holds the vertices of the simplicial complex.

Definition 13. Semisimplicial Set A simplicial set X is a sequence of sets X0, X1, X2, . . ., and

functions d0, d1 : X1 → X0, d0, d1, d2 : X2 → X1, and so on (in general, we have n + 1 functions

from Xn → Xn−1 for every n ≥ 1), such that the simplicial identities are satisfied:

didj = dj−1di

whenever i < j and those equations make sense.

Now with this notation, we can compute the homology of a simplicial set. We are interested

in the free abelian groups generated by all Xi. A free abelian group satisfies its ’abelian’ and

’group’ nature, and is a set S equipped with a binary operation + that is both a group and is

communitative under the operation. The ’free’ property arises from the existence of a basis, where

the entirety of the group can be generated from a finite sum of a set with coefficients. If we denote

the n-simplices as Xn, then n-th abelian group is Sn(K). With this idea, we can then describe the

boundary operator. It has a strong relationship to the functions defined on the simplicial set.

Homology deals with the change between immediate dimensional simplices (0-dim - 1-dim,

1-dim - 2-dim and so on.) To formalize this we use the boundary operation:
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Definition 14. Boundary Operators For all n ≥ 1, the boundary operators

∂n : Sn(X) → Sn−1(X)

are defined by sending σ ∈ Xn to
n∑

k=0

(−1)kdkσ.

We also define ∂0 : S0(X) → 0 to be the zero homomorphism.

With the notion of mapping between levels of simplices, we can understand homology. It is

the quotient space between two underlying spaces or sets. Given set Xi, provided i > 0, with

the boundary operation, the domain Si(X) can be split into two subspaces. The first space is the

elements mapped to the 0 element, known as the kernel of ∂. The second space is the elements

mapped to unique representations within Si−1. Denoting Zi(X) as ker(∂i) and Bi(X) as im(∂i+1).

These subspaces or sub-abelian groups have important intuitive notions. Zi(X) is conceptually

understood as the set of i-dimensional cycles because in 10, the boundary of a cycle equates to

0. Bi(X) is understood as i-dimensional boundaries as they represent the boundary of a higher

dimensional simplex. Homology in essence takes the quotient of these subspaces:

Hi(X) = ker(∂i)/im(∂i+1) = Zi(X)/Bi(X)

Homology looks at the parts within dimensions that are holes. To understand the overall

process of homology’s computation from a topological space, I will use the concepts from category

theory to illustrate the transition.

Definition 15. Category A Category consists of the following:

• A class ob(C) of objects in C.

• ∀ pair of objects X,Y ∈ ob(C), a set of morphisms denoted HomC(X,Y ).

• ∀X ∈ ob(C), an identity morphism 1X ∈ HomC(X,X)

• ∀(X,Y, Z) ∈ ob(C) a composition operation HomC(X,Y ) × HomC(Y,Z) → HomC(X,Z),

written as gḟ . Where the composition must satisfy identity and associativity.

The utility of expressing this process within this framing of Category Theory lies in the jumping

between different mathematical structures. Beginning with some soft squishy topological space,
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the goal is to extract the dimensionality of certain abelian groups. To get from one to the other,

we must have preservation of important information and we must have awareness of the structure

of each category of objects.

Top Simplicial Sets Abelian groups

• The category Set where ob(Set) is the class of all sets, and morphisms are functions between

sets.

• The category Top where ob(Top) is the class of all topological spaces, and morphisms are

continuous functions between such spaces.

• The category Ab were ob(Ab) is the class of all free abelian groups, and morphisms are group

homomorphisms between abelian groups.

Beginning, much like the simplicial complex approach is a way to represent the topological spaces,

here we are considering simplicial sets. Topological spaces, specifically n-dimensional manifolds

reside in Euclidean space; through this the relationship between geometric and topological objects

spawns.

Definition 16. N-simplex For any n ≥ 0, the standard n-simplex ∆n is a subspace of Rn+1,

defined as the convex hull of the standard basis {e0, e1, . . . , en}. In other words,

∆n =

{∑
i

tiei :
∑

ti = 1, ti ≥ 0

}

A very visualizable method, comparable to the notion of an abstract simplicial complex having

a geometric realization. Here we couple this idea with both a topological space and a continuum:

Definition 17. Singular Simplices Let X be a topological space. Define Singn(X) to be the

set of all continuous maps ∆n → X.

Now instead of thinking about a finite set of simplices, we conceptualize a continuum of sets

(or levels) whereby the sets contain at each n-level all continuous maps from a given n-simplex

to the topological space X. Earlier within 13 there needed to be a function di that mapped n-

simplices to the lower level. Here d can be defined with respect to the geometric underpinning of
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said topological space:

di : Singn(X) → Singn−1(X)

This allows for the conveyance of topological space into a simplicial set. A way of translating from

apples to oranges. The idea is to understand how to go from Topological spaces to Simplicial sets.

This necessitates the following:

Definition 18. Functor A functor F : C → D of categories consists of

• An assignment F : ob(C) → ob(D) from objects to objects, and

• for all X,Y ∈ ob(C), there is a function F : HomC(X,Y ) → HomD(F (X), F (Y )).

Furthermore, we must have F (1X) = 1F (X) for all X ∈ ob(C), and for all composable pairs of

morphisms f, g ∈ C,

F (g ◦ f) = F (g) ◦ F (f).

Now Singn can be understood as a functor Top → Set, and Sn discussed earlier can be thought

of as Top → Ab.

In the event of a continuous function between topological spaces, there exists both a canonical

function between sets by applying Singn and a canonical function between abelian groups by ap-

plying Sn. By canonical, I mean unique.

Thus its clear that since the codomain of Singn is Set, defining a function Free : Set → Ab

could be composed with Singn to yield Sn. Sn : Top → Ab is a composition of the two functors

Free ◦ Singn.

It is apparent that within the concept of functor, one can think of the simplicial set as a

sequence of functions itself. Then what does Sing really do? It is a functor to a collection of

functors; a collection of functors must be understood as a category. The definition of simplicial

sets is intrinsically linked to the degeneracy maps di. We need to further break down Sing(X)

constituent parts into categorical representations to give way to the functorial view of simplicial

sets- putting them together into the simplicial set construction. The domain of such functors is

presumed to be n-simplices, here we define it further:
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Definition 19. Let ∆inj denote the category with objects ob(∆inj) = {[0], [1], [2], . . .}, and mor-

phisms between objects given by

Hom∆inj
([a], [b]) = {injective functions f : {0, 1, . . . , a} → {0, 1, . . . , b} that preserve order}.

A key aspect of this construction is the properties of injectivity and order preservation. Much

like an infinite intersection of finite sets yields a finite set, the composition of a series of injective

functions preserves injectivity. The composition of order-preserving functions also preserves order.

This gets very deeply at the concept of degeneracy maps, however, the direction of such arrows

are pointed the wrong way, thus necessitating the following definition:

Definition 20. Opposite Category Let C be a category. Then the opposite category Cop is a

category such that ob(Cop) = ob(C), but for any X,Y ∈ ob(Cop), we define

HomCop(X,Y ) = HomC(Y,X).

If f ∈ HomC(Y,X) is a morphism, we denote the corresponding morphism in HomCop by fop. The

composition law we use is

(f ◦ g)op = gop ◦ fop.

Elucidating the motivation some more,

objects domain image

∆inj 0,1 0,1, 0,2, 1,2
∆op

inj 0,1, 0,2, 1,2 0,1

Table 3.1: Example of regular and opposite category.

The designated functor for simplicial sets that was imagined before can be represented as a

category Fun(∆op
inj, Set) with ob(Fun(∆op

inj, Set)) as all functors between the designated categories

and HomFun(∆n,Set)(C,D) are the natural transformations between the functors, the dis.

Definition 21. Natural-transformation Let F,G : C → D be two functors. A natural trans-

formation Θ : F → G consists of maps ΘX : F (X) → G(X) for all X ∈ ob(C), such that for all
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maps f : X → Y in C, the following diagram commutes:

F (X) G(X)

F (Y ) G(Y )

ΘX

F (f) G(f)

ΘY

In this view, provided with a continuous map between topological spaces X and Y (homomor-

phism) we can understand the established category of functors with its natural transformations

as:

Singn(X) Singn−1(X)

Singn(Y ) Singn−1(Y )

di

Singn(f) Singn−1(f)

di

Now we have:

Singn(X) = Top → Fun(∆inj,Set)

With a functor to simplicial sets, there exists a functor from simplicial sets to chain complexes.

There then exists a slew of functors that morph chain complexes of abelian groups into abelian

groups. These abelian groups are then put into a quotient relation to compute the homology groups.

A chain complex is as the name precludes, a chain of complexes. The construction requires a

combination of a novel category akin to ∆inj and Ab.

• Let Fil denote the category with one object for each non-negative integer, no morphisms

from a to b if a < b, an and a unique morphism otherwise.

It is evident from the definition how it relates to ∆op
inj. Each element and its subsequent element

have morphisms that spawn a downstream cascade due to its compositional nature. With this we

can define,

Definition 22. Chain Complex Letting functor Fil → Ab be a sequence of abelian groups with

boundary maps (∂i) between them. A chain complex of abelian groups is such a functor with the

property:

∂i−1 ◦ ∂i = 0 ∀i ≥ 2
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A similar transformation takes place with chain complexes as they did with simplicial sets;

the construction defines a category chAb where ob(chAb) are the defined functors above, and the

morphisms are the natural transformations between the functors. It is apparent that the puzzle

pieces fit,

Sing0(X) Sing1(X) Sing1(X) ...

S0(X) S1(X) S2(X) ...

Free Free

d1

Free

d2 di

Free

∂1 ∂2 ∂i

This can be understood as a functor mapping simplical sets to chain complexes. Define such

functor

S∗ : Fun(∆op
inj,Set) → chAb

Thus finishing off the assembly, all three idealized abelian groups, the end product Hn, and its

quotient relation constituents Zn and Bn are realized as functors,

Zn, Bn, Hn : chAb → Ab

Where they are plucked from the chain complex:

∅ B0(X) B1(X) ...

S0(X) S1(X) S2(X) ...

Z0(X) Z1(X) Z2(X) ...

ker(∂0)

im(∂0)

∂1

ker(∂1)

im(∂1)

∂2i

ker(∂2)

im(∂2)

∂i

ker(∂i)

im(∂i)

With such machinery defined, the homology group functor Hn can be illustrated as a composition

of the following functors.

Hn : Topological Space Simplicial Set Chain Complex Abelian Group
Sing S∗ Hn



14

The elegance of this culmination is purely theoretical as the nature of functors and categorical

insights do not lend utility in the realm of computation. For the construction of simplicial homology

does this so seamlessly described in finite discrete structures.



15

Matrix Representation and Vector space analog

4.1 Computation of Homology for low dimensional surfaces

Now with the computational constructs of simplicial complexes and the conceptual machinery

from singular homology, I will then express the analogs towards vector spaces and the resulting

computation of such objects.

Firstly the process of computing homology will be followed out on the Klein Bottle. The

following is the planar diagram of a Klein Bottle as well as its 3-D rendering:

A

A

B B

(a) Klein Bottle Planar Diagram (b) 3-D Rendering of Klein Bottle

Shown below is a minimal triangulation of the Klein bottle. From left to right the progression

is from 0-dim simplices to 2-dim simplices. The inspiration from the triangulation came from [?].

Figure 4.2: Klein Bottle Triangulation

These higher dimension simplices can be represented in terms of their faces using the equipped
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boundary operator. Previously denoted as,

∂p : Cp(K) → Cp−1(K)

Within the calculation of the Klein bottle, we have 18 2-dim simplices (Triangles) meaning

Cp(K) would be represented as a 18-dimensional vector, and 27 1-dim simplices (edges) equating to

Cp−1 being a 27-dimensional vector. Thus the boundary operation would be a 27 x 18 dimensional

matrix.Consider two 0-1 vectors of dimension 6, v1 and v2.

An important aspect of the computation of homology is the notion of coefficients. These

coefficients arise in the jump from a set to a free abelian group or in this instance the vector space

equivalents. Homology is computed using the dimensionality of certain subspaces of the boundary

operator and this requires an understanding of how the elements within the group or vector space

can be combined. These coefficients can be any ring including Z/2,Z,Q, and many others. The

choice of coefficients plays a large role in the interpretation of the Betti numbers. Here we have

chosen Z/2 as it allows for the simplest understanding of cycles.

Adding these vectors with mod 2 coefficients gives us a vector of all zeros due to the cancellation

at the second position:

v1 =


0

1

0

 , v2 =


0

1

0

v1 + v2 =


0

0

0


Now consider two different 0-1 vectors. Adding these vectors with mod 2 coefficients gives us

a linear combination of v3 and v4:

v3 =


1

0

0

 , v4 =


0

0

1

v3 + v4 =


1

0

1


The n-dimensional simplicial complexes can have their boundary operation equivalents translated

into 0-1 vectors to fill a matrix. This then allows for the matrix to be treated as a vector space with

mod 2 coefficients. After the matrices are row-reduced to echelon form, the coinciding homological

information can be deduced.

Definition. For any p ∈ {0, 1, 2, . . .}, the pth homology of a simplicial complex K is the
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following quotient vector space and subsequently its dimension known as its Betti Number:

Hp(K) :=
ker(∂p)

im(∂p+1)
βp(K) := dimHp(K) = dimker(∂p)− dim im(∂p+1)

Using linear algebra, the corresponding matrices with mod-2 field coefficients are row-reduced

into the following matrices.
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∆1 ∂(∆1)
1 C ′ +B′

2 B′ +D′

3 D′ + C ′

4 C ′ +A
5 C ′ + F
6 A+ C
7 C + F
8 C ′ + E
9 B′ + E
10 E +D′

11 D′ + F
12 A+ E
13 E + F
14 C + E
15 E +B
16 E +D
17 D + F
18 C +B
19 B +D
20 D + C
21 B + F
22 B +A
23 D +A
24 F +A
25 F +B′

26 A+B′

27 A+D′

Figure 4.3: 1-simlices and their faces



1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 1
0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


Figure 4.4: ∂(∆1) matrix in RREF

∆2 ∂(∆2)
a 1 + 9 + 8
b 2 + 9 + 10
c 3 + 11 + 5
d 4 + 8 + 12
e 10 + 11 + 13
f 6 + 12 + 14
g 13 + 16 + 17
h 14 + 18 + 15
i 15 + 16 + 19
j 17 + 7 + 20
k 7 + 18 + 21
l 19 + 22 + 23
m 20 + 23 + 6
n 21 + 22 + 24
o 24 + 25 + 26
p 5 + 25 + 1
q 26 + 2 + 27
r 27 + 3 + 4

Figure 4.5: 2-simplices
and their faces



1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 1
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1 0 1 0 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 1 0 1 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


Figure 4.6: ∂(∆2) matrix in RREF
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An equivalent way to represent this from the matrices above:

- ker(∂p) are the linearly dependent vectors of the respective boundary operation, therefor

dimker(∂p) is the number of zeroed out rows.

- im(∂p+1 are the linearly independent vectors of the higher dimensions respective boundary

operation, therefor dim im(∂p+1) is the number of non-zero rows.

Therefore, proceeding with the Klein Bottle:

β2(K) := N2 −R3 = 1− 0 = 1

β1(K) := N1 −R2 = 19− 17 = 2

β0(K) := N0 −R1 = 9− 8 = 1

4.2 Homology of similar shapes

Lastly, I would like to illustrate the capacity for classification and identification that is inherent

within homology. Using two shapes that appear very similar, we will triangulate them, and then

provide the mod 2 homology. The first shape is a double torus, or in essence a connected sum

of two tori. The second shape is a block with two spheres taken out, reminscent of a block of

cheese.Below are 3-D renderings of each.

Figure 4.7: 3-D Rendering

The concept of a connected sum in topology can be more intuitively understood through its

geometric representation rather than solely by its algebraic formulation. It involves taking two
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topological spaces and creating a new space by a specific ’cut and glue’ procedure. Concretely, this

procedure entails removing a 2-simplex (a disk-like region) from each space and then identifying (or

gluing) their corresponding lower-dimensional boundary simplices (the circular boundaries of the

removed disks) in a pairwise fashion. The resulting space, termed the connected sum of the original

spaces, effectively merges their topological features while maintaining the essential properties of

each.

Figure 4.8: Double Torus

The torus by nature contains a void within it, it is not solid; this holds for the double torus. The

block of cheese instead is solid, it contains within it higher-dimensional simplices or tetrahedron.

The process of triangulating the block of cheese began with a triangulation of a block and the

removal of two inner blocks for the holes within.

Figure 4.9: Cheese Block Triangulation

After the same process used with the Klein Bottle, consisting of labeling all 0-2 simplices,
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converting to boundary matrices, and computing the homology of each, there exists a clear dis-

tinction. The double torus has 34 2-simplices, 51 1-simplices, and 15 0-simplces. After converting

into matrices and row reducing, the resulting homology is:

β2(T) := 1 β1(T ) := 4 β0(T) := 1

This has a very intuitive understanding, the double torus is a connective sum of two tori thus

the void in a single tori is extended to a larger yet singular void. There now exist two visual holes

in the space, within the single torus the 1st Betti number was 2 now it’s 4. The external continuity

remains singular within the process of the connective sum thus the 0th Betti number of 1 remains.

As for the homology of the block of cheese, the calculation is a bit more tricky and interesting.

There now exists consideration of tetrahedrons, thus plucking out the holes in the cheese requires

eliminating higher-level simplices (tetrahedrons).

Within the triangulation of the cheese block in Figure 4.9, I have visualized the tetrahedrons

that are removed on the inside. Within the triangulation, I spared to provide the matrices as the

dimensionality of the space is enormous; the amounts are: 3-simplices :: 750, 2-simplices :: 1650,

1-simplices :: 1115, and 0-simplices :: 216. To provide some relative framing, the Betti numbers

of the sphere (S) and the solid sphere (SS) precede the Betti numbers for the block of cheese:

β2(S) := 1 β2(SS) = 0 β2(BC) = 2

β1(S) := 0 β1(SS) = 0 β1(BC) = 0

β0(S) := 1 β0(SS) = 1 β0(BC) = 1

Thus the distinguishing factor between the sphere and solid sphere is the absence of filling space

within the sphere which culminates in a β2 = 1 or a void. Therefore by triangulating the space

for the higher level simplex (tetrahedron), they can be factored into the Betti number 2 to show

fullness. What is quite interesting is that the formulation of the double torus was acquired through

a connected sum, and it seems that the block of cheese has the equivalent Betti numbers to a

connected sum of two spheres. The homology of the two shapes has been understood and each

shape can be distinguished to some degree by their invariant properties.
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Conclusion

The computation of homology from the perspective of three different angles, the simplicial com-

plexes and their abelian groups, the singular homology process, and the analogous approach

through vector spaces. The degree of abstraction that ones seeks to learn the concepts lends

to its own fruits; simplicial homology and its analogous translation into vector spaces is fruitful

for computation whereas the categoric viewpoint of singular homology aids in logical fluidity.
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Appendix

Homology will be extended into the realm of RN through the concepts of filtration and persistence.

A.1 Association of Simplicial Complexes to Point Clouds

In this section, we explore how point clouds, which are sets of points in a metric space, can be
associated with simplicial complexes. This association is fundamental in topological data analysis,
as it allows us to study the shape of the data by examining the topological properties of the
corresponding simplicial complex.

(a) Epsilon = 0 (b) Epsilon = 0.2 (c) Epsilon = 0.4

(d) Epsilon = 0.8 (e) Epsilon = 1.2

Figure A.1: Sampling of Double Torus

A.1.1 Introduction to Point Clouds
A point cloud is a set of points in some coordinate space. These points can represent a variety of
things depending on the context, such as positions of objects in space, data points from a sampling
of a manifold, or features from a high-dimensional data set.

A.1.2 Constructing Simplicial Complexes from Point Clouds
To analyze the underlying topological structure of a point cloud, we can construct a simplicial
complex that captures the relationships between points. This is often done using techniques such
as the Vietoris-Rips or Čech complexes, which create simplices based on proximity or connectivity
criteria among points. We will use Vietoris-Rips for the examples. A very illustrative example
comes from Robert Grist’s ”BARCODES: THE PERSISTENT TOPOLOGY OF DATA” [?].

A.2 Filtrations on Homology of Simplicial Complexes

Filtrations are a powerful tool in persistent homology, allowing us to study the homology of sim-
plicial complexes at various scales. By applying a filtration to a simplicial complex, we can observe
how its homological features evolve as we progressively add simplices based on a certain parameter.
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(a) Epsilon = 0 (b) Epsilon = 0.2 (c) Epsilon = 0.4

(d) Epsilon = 0.8 (e) Epsilon = 1.2

Figure A.2: Sampling of Cheese Cube

The beauty of the approach lies in the functionality of homology. Earlier we built upon the
categorical foundations, and touched upon the concept of functor 18. This plays a significant role
in the utility of persistent homology.


	Introduction
	Preliminary
	From Point-Set to Combinatorial Topology
	Topological Spaces
	Simplicial Complexes


	Categorical Perspective
	Simplical Homology to Singular Homology

	Matrix Representation and Vector space analog
	Computation of Homology for low dimensional surfaces
	Homology of similar shapes

	Conclusion
	Appendix
	Association of Simplicial Complexes to Point Clouds
	Introduction to Point Clouds
	Constructing Simplicial Complexes from Point Clouds

	Filtrations on Homology of Simplicial Complexes


